The University of Alabama at Birmingham (UAB) Department of Physics

PH 461/561 – Classical Mechanics I – Fall 2005

Assignment # 8 Due: **Thursday, October 20**

1. As studied in class, the damped harmonic oscillator allows three types of solutions:

Exponential factors appear in all three solutions and determine the *decay rate* of the motion in each case. An inspection of the above equations reveals that the *decay parameter* that dominates the decrease in amplitude for each case is as follows:

Note: In the case of strong damping, the decay parameter is chosen as the smallest of the two decay rates, because it dominates the decay for large *t.*

a) For fixed ω_0 , sketch the behavior of the *decay parameter* as a function of γ for $0 < \gamma < \infty$.

Your sketch should:

- i. Verify that the decay parameter for an overdamped oscillator *decreases* with increasing γ .
- ii. Indicate the value of γ for which the decay parameter is maximum.
- b) Explain the meaning of the maximum in the value of the decay parameter.
- 2. Verify that the function $x(t) = te^{-\gamma t}$, is indeed a second solution of the equation of motion for a critically damped oscillator ($\gamma = \omega_0$)
- 3. Find the rate of change of the energy $E = \frac{1}{2} m x^2 + \frac{1}{2} k x^2$ for a damped oscillator and show that the dE/dt is (minus) the rate at which energy is dissipated by the damping force $-b\dot{x}$.
- 4. A mass *m* subject to a linear restoring force $-kx$ and damping $-b\dot{x}$ is displaced a distance x_0 from equilibrium and released with zero initial velocity. Find the motion in the underdamped, critically damped, and overdamped cases.
- 5. Solve Problem 4 for the case when the mass starts from its equilibrium position with an initial velocity v_0 . Sketch the motion for the three cases.
- 6. Solve Problem 4 for the case when the mass has an initial displacement x_0 and initial velocity v_0 directed toward the equilibrium point. Show that for a large enough value of v_0 (namely if $|v_0| > |(\gamma + \beta)x_0|$; where $\beta = \sqrt{\gamma^2 - \omega_0^2}$ $|v_0| > |(\gamma + \beta)x_0|$; where $\beta = \sqrt{\gamma^2 - \omega_0^2}$, the mass will overshoot the equilibrium in the critically damped and overdamped cases.

Sketch the motion in these cases.

- 7. A mass of 1000 kg falls from a height of 10 m over a platform of negligible mass. One is interested in designing a spring/shock absorber system on which the platform will be mounted, such that the platform will reach a new equilibrium position 0.2 m below its original position as quickly as possible after the impact and without going beyond it (See Figure in the next page).
	- a. Find the spring constant *k* and the damping constant *b* of the shock absorber. ake sure the solution $x(t)$ found satisfies the correct initial conditions and that the platform does not go beyond the new position of equilibrium. (i.e., ensure there is no overshooting).
	- b. Determine, up to two significant digits, the time it takes for the platform to position itself within 1 mm of its final position.

- 8. **(a)** Find an expression for the phase space trajectories of the free harmonic oscillator. **(b)** Sketch the trajectories for various values of the total energy of the oscillator. **(c)** Discuss whether the trajectories are open or closed and explain the significance of this fact.
- 9. **(a)** Find an expression for the phase space trajectories of an *underdamped* harmonic oscillator. **(b)** Sketch the trajectories for various values of the total energy of the oscillator. **(c)** Discuss whether the trajectories are open or closed and explain the significance of this fact in relation to the periodicity of the motion. **(d)** Show that the phase space trajectories you found agree with the behavior of $x(t)$ and $\dot{x}(t)$ for the underdamped oscillator.
- 10. A free harmonic oscillator, initially at rest, is subject beginning at $t = 0$ to an applied force $F_0 \sin \omega t$.
	- a. Find the motion $x(t)$.
	- b. Discuss the physical meaning of the solution $x(t)$.
	- c. Find an expression for $x(t)$ in the limit of exact resonance (i.e., $\omega \rightarrow \omega_0$) and show that the amplitude of the oscillation increases linearly with time. Sketch $x(t)$ in this case.